
Devops and Data Pipelines
on the Last Frontier

Jessica Austin
Axiom Data Science

AK Dev Alliance, November 2019

About Axiom

● Founded in 2006
● ~20 people
● Distributed: Anchorage, Fairbanks, Homer,

Portland OR, Providence RI
● Mix of software developers, data

scientists, actual scientists, librarians, PMs
● Mission-driven: to improve the synthesis

and re-use of scientific data
● Broad range of partnerships, but mostly

ocean, atmospheric, and arctic sciences
● Major funders: IOOS/NOAA, National

Science Foundation (NSF), Office of Naval
Research and DARPA

2

About Axiom

About Axiom

● We are not a consulting company, we are a technology partner
○ Data management: Ingest and standardize data, improve metadata, archive for posterity
○ Data analysis: Generate new data products
○ Data discovery: Build data portals and catalogs, develop data visualizations

● We focus on a set of core products that are useful to multiple groups

3

Fixed Platforms
moorings, shore stations

Grids
models, satellite, radar

GIS
Habitat types, bathymetry,
fishing zones, etc.

Moving platforms
Gliders, animals, etc

http://portal.secoora.org/

About Axiom

● Example data portal: Alaska Ocean
Observing System (AOOS) Ocean
Data Explorer

● https://portal.aoos.org/
● NSIDC Sea Ice Concentration
● Real-time sensor catalog

4

https://portal.aoos.org/
https://portal.aoos.org/#module-metadata/391183ee-827e-11e1-a4f3-00219bfe5678
https://portal.aoos.org/#module-metadata/5da59d98-59ad-11e1-a1da-0019b9dae22b/8c5dd704-59ad-11e1-bb67-0019b9dae22b

Today’s presentation

● About me
○ School: MechE, Controls, Robotics
○ Work: ThoughtWorks, Grubhub.com, RDI, Axiom
○ Roles: Software dev, QA, DevOps, Data analysis

● Feedback loops
○ In dev: user stories, QA, DevOps, CI
○ In the community: meetups, conferences, publishing

● This presentation
○ Overview: Axiom DevOps and data pipeline infrastructure
○ Examples: data ingestion pipelines for weather model and environmental sensors
○ Focus on interesting technologies: Kafka, TimescaleDB, Luigi, Prometheus, Grafana

5

Overview: DevOps

● Private cloud in Portland, OR
○ ~5,000 processor cores
○ ~1.5 petabytes of functional storage

■ 5 petabytes of actual storage
(~1,500 hard drives)

○ Level 2 Fat Tree Infiniband Network, 40
Gb/Sec node to node). 240 Gb/Sec cluster
to cluster

○ Ansible for config management

● Why:
○ Cost: AWS ~$600k/mo storage+compute.

We operate for ~$200k/year + 0.5 FTE
○ Complete control, infiniband network
○ DevOps makes it possible
○ We enjoy it!

6

Overview: DevOps

● Gitlab for SCM + CI
○ For OSS: Github + Travis

● Everything running in Docker
○ (other than a few edge cases)
○ Internally-hosted private docker registry
○ Each deployable gitlab project contains a Dockerfile

and Gitlab CI definition

● Ansible to define app deployments
○ Can manually trigger but mostly use Gitlab CI

Pipelines

7

Gitlab CI pipelines

Overview: DevOps

● Prometheus for metrics
○ Timeseries DB with metrics segmented by label
○ Pull model: each client provides metrics

endpoint, prom scrapes periodically
○ Robust ecosystem, active development

■ e.g., node_exporter client for hardware/OS metrics
○ All new Axiom apps have prom endpoint

■ Building in to older apps as we go along

● Grafana for plotting and dashboards
● Grafana + Alertmanager + nagios for alerts

○ Nagios for basic server/hardware/network issues
○ Grafana/Alertmanager for metrics-based alerts

● Kibana + Grafana Loki for app logs

8
Grafana showing prom metrics

https://github.com/prometheus/node_exporter

Overview: Data Pipelines

9

Source Standardize Store

Simple version —>

Apache Kafka in Data Pipelines

● Kafka is a distributed, publish-and-subscribe messaging system
○ All messages in Kafka are stored on a topic
○ Processes that publish messages to topics are called producers
○ Processes that subscribe to topics and listen to messages are called consumers
○ Each topic has a message schema that defines the message structure
○ Consumer pull model; can produce/consume in batches for quick I/O
○ Benefits:

■ Easily decouple processes
● Producers/consumers don't talk directly
● Topic is generic, so can push data from anywhere
● Can scale producers or consumers independently

■ Topic log is history of events (great for debugging)
■ Can handle ridiculous number of messages

○ Downsides:
■ Steep learning curve, complex ecosystem, still in flux

● We use Kafka topics to link together components of our pipelines, and refresh
caches that power portal visualizations

10

Data Pipeline Metrics with Prometheus and Grafana

● Old school way: alert if there are a bunch of errors
○ but errors happen all the time! (source goes down, etc) and this

is ok if it happens intermittently
○ and errors can happen for all sorts of reasons: source is down,

bug in our code, problem with one of our services. difficult to
instrument all these places

● At the end of the day, you just want to know, "did
data make it all the way through the pipeline?"

● Metric: "time since last data point".
○ Segment by type, data source, platform ID
○ Rollup alerts for entire type (indicates catastrophic failure,

address immediately)
○ Alerts for single source or platform (probably source is

down or changed, address during business hours)

11

Alerting with Prometheus and Grafana

● Prometheus Alertmanager
○ Can define sophisticated rules and

behavior
○ But managing rules is only through

editing files in SCM so it's PITA to
manage (prometheus/alertmanager #552)

● Grafana Alerts
○ Very intuitive to create and view

alerts in a dashboard
○ It's not perfect, but in very active

dev and always improving
(grafana/grafana #6557)

12

https://github.com/prometheus/alertmanager/issues/552
https://github.com/grafana/grafana/issues/6557

Example: GFS weather model ingest pipeline

● Data source: NOAA NWS
● Input: GRIB2 gridded data
● 4 forecasts/day (23GB total per day)
● Output: netcdf files
● Serve with WMS
● Data pipeline:

○ Download, enhance, store
○ Trigger downstream updates

● Requirements:
○ Don't re-download any data
○ Retry if something failed

13

https://www.emc.ncep.noaa.gov/index.php?branch=GFS

Example: GFS weather model ingest pipeline

● Pipeline runs using Spotify's Luigi
○ Python package, built for large batch jobs
○ Framework for defining Tasks

■ Tasks have outputs
■ Tasks can depend on other Tasks
■ If a Task's output exists, don't re-run it!

○ Provides scheduler for running tasks
■ Allows failure + retry
■ Basic UI + API + notifications

○ Overall thoughts: great for large datasets, mature, robust,
moderate learning curve

14

https://github.com/spotify/luigi

Example: GFS weather model ingest pipeline

● All this runs in short-lived docker container, triggered by fcron project
● After completion, send Kafka message

15

Example: environmental sensor data pipeline

● Environmental sensors
○ Timeseries data
○ Weather data, ocean state, water

quality, etc
○ Focus on real-time data

● ~40k stations across 100+ data sources
● ~50,000,000 new observations per week
● We’ve been redesigning this from the

ground up using Kafka, TimescaleDB, and
Prometheus

16

Example: environmental sensor data pipeline

●

17

TimescaleDB for real-time data

● TimescaleDB is a time-series database built
on top of Postgres (it's an extension)

○ Exposes what look like singular tables,
called hypertables, that are actually an
abstraction of many individual tables
holding the data, called chunks

○ Chunks are created by partitioning the
hypertable's data into one or multiple
dimensions (e.g., time and device ID)

● Higher data ingest rate
● Better performance for typical

timeseries queries
● Time-specific functions

18

https://docs.timescale.com/latest/introduction/architecture

TimescaleDB for real-time data

● We're using TimescaleDB as the "real-time"
sensor cache (last 30 days of data)

○ Quickly generate "global" heatmaps
with latest data per sensor type

○ Buffer for frequent data updates
■ Every 15 mins: get new data
■ Every day: more advanced processing

● Overall impressions
○ Very simple to set up and use

(compared to influxdb, etc)
○ In very active dev, lots of investment
○ Single machine right now, clustering in

private beta

19

Any questions?

20

Kafka as a buffer for large data ingestions

21

Elasticsearch for data discovery

● lots of little pieces -- how to consolidate?
○ elasticsearch with shared document structure ("asset")

■ id, type, label, start, end, geospatial extent, variable names, etc
● Include some examples here – screenshot of catalog, maybe screenshot of JSON
● Mention that we have an “asset metadata update” and “asset data update” topic, and include

some examples
○ Both automated processes and humans would trigger messages on this topic
○ This topic is great as a history of updates

●

22

